Accelerator Mass Spectrometric Measurements of Uranium-236 Associated with Potential Workplace Intakes of Anthropogenic Uranium

> T.F. Hamilton, T.A. Brown, A.A. Marchetti, R.E. Martinelli, A. Wood-Zika, R.W. Williams, L. Johnson Collins, Wm.G. Mansfield, and J.P. Knezovich

50th Annual Conference on Bioassay, Analytical and Environmental Radiochemistry

Cincinnati, Ohio

October 30 – November 4, 2004

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purpose.

This work was parformed under the suspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W.750 Eng. 48

Why Interest in uranium isotopes!

Emerging needs in a number of different fields

- > Human health
- Nuclear forensics
- Environmental assessments
- Advances in measurement technologies, especially in relation to technologies based on mass spectrometry

Analytical & Nuclear Chemistry Division MC ICP-MS

L

Applications:

□ Routine measurements of rare/ stable isotope ratios and rare isotope sensitivities atoms; e.g., very well developed for ${}^{14}C/{}^{12}C$.

□ More recently demonstrated for long-lived radionuclides such as the actinides, ¹²⁹I, and ⁹⁹Tc

□ AMS heavy-element line at LLNL designed specifically for lowlevel detection of actinide elements—now used routinely for Pu (and U) isotope measurements at sensitivities of 10^{5} – 10^{6} atoms.

Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory

Features of the heavy element AMS system at CAMS;

- □ Rapid electrostatic switching between masses of interest
- □ High abundance sensitivity and a very wide dynamic range
- □ Simple chemistry and relatively high sample through-put (cost efficiencies)
- □ Very robust measurement technology

HVEC Model FN Tandem Van de Graaff accelerator operated at voltages up to 9 MV: gas or foil stripping

Isotope	Atom%	Half-life (years)	Origin	
²³⁴ U	0.005	4.468 x 10 ⁵	²³⁸ U decay chain	
²³⁵ U	0.72	2.34 x 10 ⁷	Primordial	
²³⁸ U	99.27	7.038 x 10 ⁸	Primordial	
236U	ca. 10 ⁻¹⁶	2.446 x 10 ⁵	²³⁵ U + 1n → ²³⁶ U	

²³⁶U measurements in bioassay samples

Reagent Blank Data (N= 20)

Mean = $4.9 \times 10^{-7} + 2.4 \times 10^{-7} \text{ ng}$

Limit of Detection ~ 7 x 10^{-7} ng

c/w 238 U ~ 0.2 ng; 235 U 0.04 ng based on MC ICP-MS

Sample ID	²³⁶ U, ng	1-σ
Reagent Blank_1	6.7E-07	2.9E-07
Reagent Blank_2	7.9E-07	2.8E-07
Reagent Blank_3	1.0E-07	1.1E-07
Reagent Blank_4	7.5E-07	2.7E-07
Reagent Blank_5	4.2E-07	1.9E-07
Reagent Blank_6	3.5E-07	1.8E-07
Reagent Blank_7	2.4E-07	1.7E-07
Reagent Blank_8	9.5E-07	2.9E-07
Reagent Blank_9	7.9E-07	3.0E-07
Reagent Blank_10	6.4E-07	2.9E-07
Reagent Blank_11	6.1E-07	2.9E-07
Reagent Blank_12	7.1E-07	2.9E-07
Reagent Blank_13	3.6E-07	2.2E-07
Reagent Blank_14	2.7E-07	2.4E-07
Reagent Blank_15	2.8E-07	2.4E-07
Reagent Blank_16	4.5E-07	2.4E-07
Reagent Blank_17	6.1E-07	2.5E-07
Reagent Blank_18	1.7E-07	2.2E-07
Reagent Blank_19	2.7E-07	2.1E-07
Reagent Blank_20	4.6E-07	2.4E-07

Sample ID	ng ²³⁶ U per sample	1-σ	ng ²³⁶ U per gram	1-σ
70250	1.7E-07	3.0E-07	1.8E-09	3.3E-09
70252	4.6E-07	3.4E-07	8.2E-09	5.9E-09
70254	3.6E-07	3.6E-07	6.7E-09	6.8E-09
70256	3.5E-07	3.7E-07	3.8E-09	4.0E-09
70293	1.2E-07	3.0E-07	1.2E-09	3.0E-09
70386	2.6E-07	3.7E-07	4.6E-09	6.6E-09
70392	1.3E-07	3.0E-07	2.4E-09	5.7E-09
70396	3.9E-07	3.7E-07	5.0E-09	4.7E-09

LLNL rad worker cohort with a known or suspected workplace intake of uranium

Sample ID	ng ²³⁶ U per D sample 1-σ		ng ²³⁶ U per gram	1-σ
66479	1.7E-04	6.7E-06	3.2E-06	1.3E-07
66480	1.5E-06	5.5E-07	2.0E-08	7.4E-09
66783	4.6E-06	7.5E-07	5.9E-08	9.6E-09
66834	8.4E-05	3.9E-06	1.1E-06	4.9E-08
66242	4.5E-06	7.5E-07	5.0E-08	8.5E-09
66241	8.0E-05	5.1E-06	3.9E-07	2.5E-08
68860	3.4E-05	2.7E-06	1.6E-07	1.3E-08
69360	2.5E-04	9.1E-06	1.5E-06	5.3E-08
68236	9.8E-06	1.2E-06	7.5E-08	9.0E-09
69763	5.4E-05	3.0E-06	4.3E-07	2.3E-08
68611	<7E-0)7	<4E-0	08
67608	6.3E-06	9.5E-07	3.1E-08	4.6E-09
67982	1.6E-05	1.5E-06	5.8E-08	5.6E-09
69489	2.7E-06	6.7E-07	3.2E-08	7.9E-09
69838	1.3E-04	6.2E-06	1.6E-06	8.0E-08
69840	3.8E-05	2.6E-06	1.9E-07	1.3E-08
70022	4.9E-05	3.0E-06	6.1E-07	3.7E-08

Total U versus ²³⁶U in LLNL worker cohort with a known or suspected workplace intake

Sample ID	ng ²³⁵ U per sample (ICP-MS)	1-σ	ng ²³⁸ U ng per sample (ICP-MS)	1-σ	Total ng U per sample (ICP-MS)	1-σ	ng ²³⁶ U per sample (AMS)	1-σ
66479	'9 <0.0007		7.2	0.1	7.2	0.1	1.7E-04	6.7E-06
66480) <0.0007		0.0	0.1	0.0	0.1	1.5E-06	5.5E-07
66783	0.0196	0.0004	0.2	0.1	0.3	0.1	4.6E-06	7.5E-07
66834	4 <0.0007		3.8	0.1	3.8	0.1	8.4E-05	3.9E-06
66242	0.0008	0.0002	0.3	0.1	0.3	0.1	4.5E-06	7.5E-07
66241	0.0125	0.0003	5.8	0.1	5.8	0.1	8.0E-05	5.1E-06
68860	0.0009	0.0002	3.0	0.1	3.0	0.1	3.4E-05	2.7E-06
69360	0.0277	0.0005	9.5	0.2	9.6	0.2	2.5E-04	9.1E-06
68236	0.0159	0.0004	2.4	0.1	2.4	0.1	9.8E-06	1.2E-06
69763	0.0233	0.0005	3.4	0.1	3.4	0.1	5.4E-05	3.0E-06
68611	0.0159	0.0004	0.0	0.1	0.0	0.1	<7E	-07
67608	0.0146	0.0004	16.0	0.3	16.0	0.3	6.3E-06	9.5E-07

☐ The ²³⁶U content of bioassay samples collected from the LLNL rad worker cohort appears to be clearly elevated over those of the baseline cohort

Data confirms that worker(s) has been previously exposed to an anthropogenic source of uranium containing ²³⁶U

L

Results of intercomparison study on U isotopes in bioassay samples (unpublished)

■AMS offers a robust measurement technique for detection of ²³⁶U in bioassay samples at sensitivities of 10⁵-10⁶ atoms

□ The application of ²³⁶U in bioassay studies appears to offer new opportunities for improving the standard of occupational safety and risk management at LLNL, and elsewhere around the DOE complex

□ ²³⁶U is a potentially useful 'fingerprint' for assessing the presence of anthropogenic sources of uranium either inside the human body or in the environment