Marshall Islands Program
Quality Assurance Report

S.R. Kehl
T.F. Hamilton
T.M. Jue
D.P. Hickman

February 2007
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Marshall Islands Program
Quality Assurance Report

Performance Evaluation of Whole Body
Counting Facilities in the Marshall
Islands (2002-2005)

S.R. Kehl, T.F. Hamilton, T.M. Jue, and D.P. Hickman

Lawrence Livermore National Laboratory
Livermore, CA 94551
U.S.A.

February 2007
Table of Contents

Introduction .. 01
Results and Discussion .. 02
Summary ... 04
References ... 04
Acknowledgments .. 04

Appendix A. Summary performance evaluation statistical data and charts for whole body count measurements performed at the LLNL, Enewetak, Rongelap and Utrö̈k (Majuro) Atoll whole body counting facilities used in support of the Marshall Islands Radiological Surveillance Program (2002–2005). ...A-1

List of Tables

Table 1a. Performance evaluation summary statistics for whole body count measurements of 137Cs performed at the LLNL facility (2002–2005) 05

Table 1b. Performance evaluation summary statistics for whole body count measurements of 137Cs performed at the Enewetak facility (2002–2005) 06

Table 1c. Performance evaluation summary statistics for whole body count measurements of 137Cs performed at the Rongelap facility (2002–2005) 07

Table 1d. Performance evaluation summary statistics for whole body count measurements of 137Cs performed at the Utrö̈k (Majuro) facility (2002–2005) ... 08

List of Figures

Figure 1. Multivar chart expressed as the relative bias statistic for whole body count measurements of 137Cs in performance evaluation samples supplied by the Oak Ridge National Laboratory (2002–2005) .. 09
Performance Evaluation of Whole Body Count Measurements Performed by Participants under the Marshall Islands Radiological Surveillance Program (2002-2005)

S.R. Kehl, T.F. Hamilton, T.M. Jue, and D.P. Hickman
Lawrence Livermore National Laboratory, Livermore, CA 94551 (USA)

Introduction

The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands (https://eed.llnl.gov/mi/). Local atoll governments have been actively engaged in developing shared responsibilities for protecting the health and safety of resettled and resettling population at risk from exposure to elevated levels of residual fallout contamination in the environment. Under the program, whole body counting facilities have been established at three locations in the Marshall Islands. These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing technical support services including data quality assurance and performance testing. We have also established a mirror whole body counting facility at the Lawrence Livermore National Laboratory as a technician training center. The LLNL facility also allows program managers to develop quality assurance and operational procedures, and test equipment and corrective actions prior to deployment at remote stations in the Marshall Islands.

This document summarizes the results of external performance evaluation exercises conducted at each of the facilities (2002-2005) under the umbrella of the Oak Ridge National Laboratory Intercomparison Studies Program (ISP). The ISP was specifically designed to meet intercomparison requirements of the United States (U.S.) Department of Energy Laboratory Accreditation Program (DOELAP). In this way, the Marshall Islands Radiological Surveillance Program has attempted to establish quality assurance measures in whole body counting that are consistent with standard requirements used to monitor DOE workers in the United States. Based on ANSI N13.30, the acceptable performance criteria for relative measurement bias and
precision for radiobioassay service laboratory quality control, performance evaluation, and accreditation is -25% to +50% and less than or equal to 40%, respectively.

Results and Discussion

LLNL receives performance evaluation samples from the Oak Ridge National Laboratory on a bi-annual basis. The performance evaluation samples are prepared in a mock-up geometry (i.e., a 5-bottle phantom) that simulates the upper and lower torso of the human body. The samples usually contain a mix of barium-133 (133Ba), cobalt-60 (60Co), cesium-137 (137Cs) and yttrium-88 (88Y) isotopes at nominal concentrations of \leq 500 nCi (18.5 kBq) per sample. The ISP at Oak Ridge use stock isotope solutions indirectly traceable to the National Institute of Standards and Technology (NIST). Details concerning the NIST stock solutions and ISP spikes used in the preparation of the 5-bottle whole body count performance evaluation samples can be found elsewhere (ISP Report, 2005 and related publications). The primary pathway for exposure to residual fallout contamination in the Marshall Islands is ingestion, especially in relation to the uptake of 137Cs and, to a lesser extent, strontium-90 (90Sr) from consumption of locally grown food crop products such as coconuts. Consequently, we have limited the focus of our performance evaluation exercises under the Marshall Islands Program to whole body count measurements of 137Cs.

The individual results of performance evaluation exercises conducted between 2002 and 2005 (N=7) are shown in the charts presented in Appendix 1 and summarized in Table 1a-d. The relative performance of whole body counting facilities has also been represented graphically in a Multivar quality control chart (Figure 1).

For testing purposes, the relative bias (%) for the i^{th} measurement conducted in a facility shows how close the measured activity (A_i) is to the actual spike value (A_{ai}), and is defined as:

$$B_{ri} = \frac{(A_i - A_{ai})}{A_{ai}} \times 100$$

The relative bias (%) for any whole body count facility is calculated as the average of the individual relative biases B_{ri}, and is defined as:
\[B_r = \frac{\sum_{i=1}^{n} B_{ri}}{N} \]

where \(N \) is the number of test measurements performed within each facility. The acceptance criteria for the relative measurement bias statistic based on the ANSI 13.30 standard for radiobioassay service laboratory quality control, performance testing, and accreditation is -25% to +50%.

All whole body counting facilities operating under the Marshall Islands Radiological Surveillance Program passed the bias performance test criteria for all exercises conducted during this performance evaluation period (Table 1a-d). The mean relative bias statistic for the LLNL, Rongelap, Enewetak and Utrôk (Majuro) facilities over performance evaluation period was 25%, 15.4%, 19.6% and -5.4%, respectively.

The relative precision (\(\% \), \(S_B \)) of the measurements performed across each whole body count facility is the relative dispersion of the values of \(B_{ri} \) from their mean \(B_r \), and is defined as:

\[S_B = \sqrt{\frac{\sum_{i=1}^{N} (B_{ri} - B_r)^2}{(N-1)}} \]

The acceptance criteria for the relative measurement precision statistic (\(S_B \)) based on the ANSI 13.30 standard for radiobioassay service laboratory quality control, performance testing, and accreditation is less than or equal to 40%.

All whole body counting facilities operating under the Marshall Islands Radiological Surveillance Program passed the relative precision performance test criteria for all exercises conducted during this performance evaluation period (Table 1a-d). The mean relative precision statistic for the LLNL, Rongelap, Enewetak and Utrôk (Majuro) facilities over this performance evaluation period was 8.9%, 1.6%, 9.5% and 16.7%, respectively.

The combined relative bias and relative precision statistic for all measurements was 12.6% and 20.5%, respectively.
Summary

During this performance evaluation period (2002-2005), the Marshall Islands whole body counting program passed all applicable ANSI N13.30 performance criteria for relative measurement bias and precision for measurements of 137Cs in performance evaluations samples prepared and distributed by the Oak Ridge National Laboratory.

References

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. The Marshall Islands Program at the Lawrence Livermore National Laboratory is funded by the Office of International Health Studies, U.S. Department of Energy. We take this opportunity to thank the local atoll leadership in the Marshall Islands and their representatives for helping establish the whole body counting program. We also thank our Marshallese technicians for their efforts in overseeing the daily operations of the facilities and Dr. Gerald Payne at the Oak Ridge National Laboratory for supplying the performance evaluation samples.
Table 1a. Performance evaluation summary statistics for whole body count measurements of 137Cs performed at the LLNL facility (2002–2005).

<table>
<thead>
<tr>
<th>Facility/Date</th>
<th>Reference Value, nCi ($\pm 1\sigma$)</th>
<th>Reported Value, nCi ($\pm 1\sigma$)</th>
<th>Measurement Bias (%)</th>
<th>ANSI N13.30 Performance Evaluation Criteria (Pass or Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th Quarter 2002</td>
<td>291 ± 8</td>
<td>396 ± 25</td>
<td>36.2%</td>
<td>Pass</td>
</tr>
<tr>
<td>2nd Quarter 2003</td>
<td>123 ± 3</td>
<td>158 ± 12</td>
<td>28.2%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2003</td>
<td>332 ± 9</td>
<td>440 ± 27</td>
<td>32.6%</td>
<td>Pass</td>
</tr>
<tr>
<td>2nd Quarter 2004</td>
<td>401 ± 3</td>
<td>517 ± 24</td>
<td>29.0%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2004</td>
<td>253 ± 7</td>
<td>325 ± 15</td>
<td>28.5%</td>
<td>Pass</td>
</tr>
<tr>
<td>1st Quarter 2005</td>
<td>250 ± 7</td>
<td>300 ± 58</td>
<td>20.6%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2005</td>
<td>75 ± 2</td>
<td>83 ± 5</td>
<td>11.0%</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Mean Measurement Bias Statistic (all values) = 25.0% Pass

Mean Measurement Precision Statistic (all values) = 8.9% Pass
Table 1b. Performance evaluation summary statistics for whole body count measurements of 137Cs performed at the Enewetak facility (2002–2005).

<table>
<thead>
<tr>
<th>Facility/Date</th>
<th>Reference Value, nCi ± 1σ</th>
<th>Reported Value, nCi ± 1σ</th>
<th>Measurement Bias (%)</th>
<th>ANSI N13.30 Performance Evaluation Criteria (Pass or Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enewetak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Quarter 2002</td>
<td>291 ± 8</td>
<td>389 ± 11</td>
<td>33.6%</td>
<td>Pass</td>
</tr>
<tr>
<td>2nd Quarter 2003</td>
<td>123 ± 3</td>
<td>161 ± 5</td>
<td>31.0%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2003</td>
<td>332 ± 9</td>
<td>391 ± 11</td>
<td>17.9%</td>
<td>Pass</td>
</tr>
<tr>
<td>2nd Quarter 2004</td>
<td>401 ± 3</td>
<td>438 ± 12</td>
<td>9.2%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2004</td>
<td>253 ± 7</td>
<td>280 ± 8</td>
<td>10.6%</td>
<td>Pass</td>
</tr>
<tr>
<td>1st Quarter 2005</td>
<td>250 ± 7</td>
<td>286 ± 9</td>
<td>14.5%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2005</td>
<td>75 ± 2</td>
<td>90 ± 4</td>
<td>20.7%</td>
<td>Pass</td>
</tr>
<tr>
<td>Mean Measurement Bias Statistic (all values) =</td>
<td></td>
<td></td>
<td>19.0%</td>
<td>Pass</td>
</tr>
<tr>
<td>Mean Measurement Precision Statistic (all values) =</td>
<td></td>
<td></td>
<td>9.5%</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Table 1c. Performance evaluation summary statistics for whole body count measurements of 137Cs performed at the Rongelap facility (2002–2005).

<table>
<thead>
<tr>
<th>Facility/Date</th>
<th>Reference Value, nCi ($\pm 1\sigma$)</th>
<th>Reported Value, nCi ($\pm 1\sigma$)</th>
<th>Measurement Bias (%)</th>
<th>ANSI N13.30 Performance Evaluation Criteria (Pass or Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLNL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Quarter 2002</td>
<td>291 ± 8</td>
<td>396 ± 25</td>
<td>36.2%</td>
<td>Pass</td>
</tr>
<tr>
<td>2nd Quarter 2003</td>
<td>123 ± 3</td>
<td>158 ± 12</td>
<td>28.2%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2003</td>
<td>332 ± 9</td>
<td>440 ± 27</td>
<td>32.6%</td>
<td>Pass</td>
</tr>
<tr>
<td>2nd Quarter 2004</td>
<td>401 ± 3</td>
<td>517 ± 24</td>
<td>29.0%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2004</td>
<td>253 ± 7</td>
<td>325 ± 15</td>
<td>28.5%</td>
<td>Pass</td>
</tr>
<tr>
<td>1st Quarter 2005</td>
<td>250 ± 7</td>
<td>300 ± 58</td>
<td>20.6%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2005</td>
<td>75 ± 2</td>
<td>83 ± 5</td>
<td>11.0%</td>
<td>Pass</td>
</tr>
<tr>
<td>Mean Measurement Bias Statistic (all values) =</td>
<td>25.0%</td>
<td>Pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Measurement Precision Statistic (all values) =</td>
<td>8.9%</td>
<td>Pass</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1d. Performance evaluation summary statistics for whole body count measurements of 137Cs performed at the Utrōk (Majuro) facility (2002–2005).

<table>
<thead>
<tr>
<th>Facility/Date</th>
<th>Reference Value, nCi (± 1σ)</th>
<th>Reported Value, nCi (± 1σ)</th>
<th>Measurement Bias (%)</th>
<th>ANSI N13.30 Performance Evaluation Criteria (Pass or Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utrok (Majuro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Quarter 2002</td>
<td>291 ± 8</td>
<td>274 ± 10</td>
<td>-6.0%</td>
<td>Pass</td>
</tr>
<tr>
<td>2nd Quarter 2003</td>
<td>123 ± 3</td>
<td>114 ± 5</td>
<td>-7.1%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2003</td>
<td>332 ± 9</td>
<td>311 ± 11</td>
<td>-6.4%</td>
<td>Pass</td>
</tr>
<tr>
<td>2nd Quarter 2004</td>
<td>401 ± 3</td>
<td>333 ± 12</td>
<td>-16.9%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2004</td>
<td>253 ± 7</td>
<td>217 ± 8</td>
<td>-14.3%</td>
<td>Pass</td>
</tr>
<tr>
<td>1st Quarter 2005</td>
<td>250 ± 7</td>
<td>223 ± 9</td>
<td>-10.6%</td>
<td>Pass</td>
</tr>
<tr>
<td>4th Quarter 2005</td>
<td>75 ± 2</td>
<td>62 ± 4</td>
<td>-16.6%</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Mean Measurement Bias Statistic (all values) = -5.4% Pass

Mean Measurement Precision Statistic (all values) = 16.7% Pass
Figure 1. Multivar chart expressed as the relative bias statistic for whole body count measurements of 137Cs in performance evaluation samples supplied by the Oak Ridge National Laboratory (2002–2005).
Appendix A

Summary performance evaluation statistical data and charts for whole body count measurements performed at the LLNL, Enewetak, Rongelap and Utrök (Majuro) Atoll whole body counting facilities used in support of the Marshall Islands Radiological Surveillance Program (2002–2005)
Performance Evaluation Data (4th Quarter 2002)

Whole Body Count Measurements of ^{137}Cs

Marshall Islands Performance Evaluation Exercise
4th Quarter 2002

Number of participating facility 4
Number of reported results 4
Reference value 291 nCi
Facility Mean 350 nCi
Standard Deviation 56 nCi
Standard Error Mean 28 nCi
95% Confidence Interval 260-439 nCi
Performance Evaluation Data (2nd Quarter 2003)

Whole Body Count Measurements of 137Cs

Number of participating facility: 4
Number of reported results: 4
Reference value: 123 nCi
Facility Mean: 143 nCi
Facility Median: 149 nCi
Standard Deviation: 22 nCi
Standard Error Mean: 11 nCi
95% Confidence Interval: 118-109 nCi
Performance Evaluation Data (4th Quarter 2003)

Whole Body Count Measurements of 137Cs

![Bar chart showing activity of 137Cs in different facilities.]

- Number of participating facility: 4
- Number of reported results: 4
- Reference value: 332 nCi
- Facility Mean: 380 nCi
- Facility Median: 385 nCi
- Standard Deviation: 53 nCi
- Standard Error Mean: 27 nCi
- 95% Confidence Interval: 295-465 nCi
Performance Evaluation Data (2nd Quarter 2004)

Whole Body Count Measurements of ^{137}Cs

<table>
<thead>
<tr>
<th>Facility</th>
<th>Cs-137 Activity (nCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLNL</td>
<td>250</td>
</tr>
<tr>
<td>Rongelap</td>
<td>350</td>
</tr>
<tr>
<td>Enew etak</td>
<td>450</td>
</tr>
<tr>
<td>Utrok/Majuro</td>
<td>550</td>
</tr>
</tbody>
</table>

- **Number of participating facility**: 4
- **Number of reported results**: 4
- **Reference value**: 401 nCi
- **Facility Mean**: 438 nCi
- **Facility Median**: 451 nCi
- **Standard Deviation**: 77 nCi
- **Standard Error Mean**: 39 nCi
- **95% Confidence Interval**: 314-561 nCi
Performance Evaluation Data (4th Quarter 2004)

Whole Body Count Measurements of 137Cs

Number of participating facility 4
Number of reported results 4
Reference value 253 nCi
Facility Mean 279 nCi
Facility Median 288 nCi
Standard Deviation 46 nCi
Standard Error Mean 23 nCi
95% Confidence Interval 207-352 nCi
Performance Evaluation Data (2nd Quarter 2005)

Whole Body Count Measurements of 137Cs

Marshall Islands Performance Evaluation Exercise
2nd Quarter 2005

<table>
<thead>
<tr>
<th>Facility</th>
<th>Cs-137 (nCi) Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLNL</td>
<td>300</td>
</tr>
<tr>
<td>Rongelap</td>
<td>250</td>
</tr>
<tr>
<td>Enew etak</td>
<td>200</td>
</tr>
<tr>
<td>Utrok/Majuro</td>
<td>150</td>
</tr>
</tbody>
</table>

Number of participating facility 4
Number of reported results 4
Reference value 250 nCi
Facility Mean 274 nCi
Facility Median 286 nCi
Standard Deviation 35 nCi
Standard Error Mean 17 nCi
95% Confidence Interval 218-329 nCi
Performance Evaluation Data (4th Quarter 2005)

Whole Body Count Measurements of 137Cs

Number of participating facility 4
Number of reported results 4
Reference value 75.0 nCi
Facility Mean 80.5 nCi
Facility Median 85.0 nCi
Standard Deviation 12.7 nCi
Standard Error Mean 8.3 nCi
95% Confidence Interval 60.4-101 nCi.